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Abstract –  

Many of the fatalities and injuries in the 

construction industry occur in scaffolding accidents, 

and monitoring the scaffolding process and checking 

compliance are critical. However, monitoring 

scaffolds is labor-intensive and inefficient because it 

is done manually. To address this issue, we propose an 

advanced 3D reconstruction method for detecting and 

monitoring scaffolds. Deep learning-based RandLA-

Net architecture is used to perform scene 

segmentation. RandLA-Net is trained based on 

transfer learning, using the knowledge of the model 

learned with the Semantic3D dataset. RandLA-Net 

uses 3D point cloud data that are matched and 

registered by LIO-SAM, a laser slam algorithm. By 

attaching a LiDAR to a quadruped robot, it is possible 

to obtain data frequently in a manner suitable for 

construction sites. The proposed methodology has 

demonstrated good performance in monitoring 

scaffolds. 
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1 Introduction 

According to the Korea Occupational Safety and 

Health Agency, 292 fatalities occurred at construction 

sites in 2019, in which 162 workers died during work 

related to temporary structures [1]. The main factor 

among the causes of fatalities and injuries is scaffolds, 

one of the representative temporary structures. To secure 

the safety, guidelines for installation and use are provided, 

and they check the spacing, angle, presence, etc. of the 

scaffold members. However, the process of checking the 

regulation of scaffolds is done manually by humans and 

takes a very long time. 

Previous studies have attempted vision-based safety 

monitoring [2, 3] and sensor-based monitoring such as 

strain gauge or accelerometer [4, 5] to perform automated 

management of scaffolds. Wang [6] classified the point 

clouds of scaffolds acquired by 

Terrestrial Laser Scanning (TLS) using histogram of data, 

M-estimator Sample Consensus (MSAC), and Random 

Sample Consensus (RANSAC) algorithm. Xu et al. [7] 

proposed a reconstruction procedure for scaffolds using 

a 3D local feature descriptor, 

Linear Straight Signature Histogram of Orientations 

(LSSHOT), for the photogrammetric point cloud. For 

effective safety management of scaffolds, the actual 

geometry of the scaffold should be checked. However, 

not much research has been done on point cloud data 

containing geometric information of scaffolds. Moreover, 

the recognition method of scaffolds via a deep learning-

based 3D segmentation model has not yet been proposed. 

To address the above issue, this paper proposes a 

point cloud data reconstruction method of scaffolds 

acquired with a robot dog, as shown in Figure 1. In 

general, acquisition and post-processing of point cloud 

data take a lot of time. However, this study uses the robot 

dog and a Mobile Laser Scanning (MLS) method with a 

Simultaneous Localization and Mapping (SLAM) 

algorithm to improve the efficiency of data collection.  

 

Figure 1. Overview of the proposed method 

2 Methodology  

2.1 Data acquisition system using robot dog 

A data collection system using a robot dog (A1 robot 

dog of Unitree) was developed for this study. An Inertial 

Measurement Unit (IMU) sensor and Velodyne VLP-16 

are mounted on the robot dog; the robot dog provides 

power for the sensors. Figure 2 shows the overall 

hardware configuration of the robot dog. The software 

development kit provided by Unitree, drivers for 

scanning instruments, and customized teleoperation code 

were installed on the on-board computer (NVIDIA Jetson 
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TX2). Main computer and on-board computer 

communicated via Secure Shell (SSH) using the robot's 

internal Wireless Access Point (WAP). By manipulating 

the on-board computer through SSH, control, scan, and 

data transmission became possible remotely. 

Since the robot dog's field of view was limited when 

collecting data, this study developed appropriate scan 

motions and used them for data acquisition. The robot 

dog's maximum pitch and roll angle were 20 degrees, 

respectively, and the maximum yaw angle was 28 

degrees. Therefore, the combination of angles of roll, 

pitch, and yaw has made the robot dog's field of view as 

wide as possible in the scan position. A few examples of 

posture at the scanning point of the robot dog are shown 

in Figure 3. Depending on the relative position of the 

scaffold, the robot's scanning posture was changed, and 

data were continuously acquired by wandering around 

the structure. 

 

 

Figure 2.  Hardware configuration of robot dog 

 

 

Figure 3. Examples of robot dog scanning postures 

2.2 Mapping point cloud data 

To create the point cloud map and estimate the 

odometry of the robot dog, a SLAM algorithm called 

LIO-SAM [8] was used. The LIO-SAM algorithm uses 

high-frequency IMU data to predict tightly-coupled lidar 

inertial odometry and enables precise and fast mapping 

in complex environments [8]. The SLAM algorithm was 

implemented with IMU data and LiDAR data. The data 

acquired from the robot's on-board computer were 

transferred to the laptop, the main computer. Figure 4(b) 

and Figure 5(b) show the registered point cloud data 

acquired at Site A and Site B, respectively. 

 

 

 

(a) (b) 

Figure 4. Site A dataset; (a) photograph of Site A, (b) 

registered point clouds 

 

 

(a) (b) 

Figure 5. Site B dataset; (a) photograph of Site B, (b) 

registered point clouds 

 

2.3 Transfer learning and 3D segmentation 

To achieve high learning performance from less 

training data, we propose a transfer learning-based 

semantic segmentation method for training a new model 

using a pre-trained model. The Semantic3D dataset [9] 

was used to obtain the pre-trained model. Semantic3D is 

one of the typical datasets used in 3D classification, 3D 

object detection and tracking, and 3D segmentation. This 

dataset was chosen because it is similar in size to our 

dataset, acquired outdoors, and is a registered data unlike 

SemanticKITTI [10].  

The registered 3D point cloud data were segmented 

by RandLA-Net [11]. It achieved the best performance 

for 3D segmentation method on the Semantic3D 

benchmark [12]. RandLA-Net uses random sampling and 
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local feature aggregators to classify large-scale point 

cloud data in a short period of time. The network follows 

the commonly used encoder-decoder structure and 

consists of five encoder-decoders. In this study, we 

attempted a fine-tuning method through changing the 

frozen layers of encoders and decoders of the pre-trained 

model. Consequently, the training performance was best 

when re-training three encoders and decoders in the 

middle of the network. 

3 Experiments and Results 

3.1 Dataset 

Point clouds were acquired at Site A and Site B as 

shown in Figure 4 and Figure 5. Point cloud data acquired 

at Site A were used to train the model, and data acquired 

at Site B were used for testing and validation. Of the four 

structures at Site B, only the second structure was the 

validation data and the others were the test data. On Site 

A, point cloud data were acquired through the robot dog 

and a handheld method. Sensor data were stored in a 

Robot Operating System (ROS)-based bag file format, 

with 16 files acquired in the handheld method and 20 files 

acquired using the robot dog. 

3.2 Implementation 

RandLA-Net was trained with a batch size of 4 and 

there were two class labels: background and scaffold. 

Epoch was set to 100 by default, early stopping was used, 

and learning rate decay was implemented. The training 

process of the 3D segmentation model on data acquired 

by the robot dog is as follows: 1) Find the most suitable 

modified structure through fine-tuning using training and 

validation data acquired by the handheld method; 2) 

Train the model using the found structure in the above 

step with the training data acquired by the robot dog. 

3.3 Evaluation metrics 

The performance of the semantic segmentation model 

was computed by Eqs. (1), (2), and (3). Precision (P) 

indicates how many actual positive points are included 

among the positive points predicted by the model. Recall 

(R) calculates the proportion of points that are predicted 

to be positive properly among the points that are actually 

positive. F1-score (F1) is the weighted average 

of Precision and Recall.  

 

P =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

(1) 

 

𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

(2) 

 

𝐹1 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 

 

(3) 

3.4 Results and Discussion 

Table 1 demonstrates the performance of a model 

trained through transfer learning using data acquired by 

the robot dog. The model achieved an 84.96% F1-score 

on scaffolds. The F1-score of the scaffolds is always 

relatively lower than that of the background, because the 

number of points corresponding to the scaffolds is small. 

Figure 6 shows the worst and best examples of scaffold 

prediction. In Figure 6, pink is true positive, cyan is true 

negative, yellow is false negative, and orange is false 

positive. In the figure, the white area is caused by 

cropping the point cloud data corresponding to the 

validation data. 

 

Table 1. The performance of the 3D segmentation 

model trained with the robot dog dataset  

 Precision Recall F1 score 

Scaffolds 97.15% 76.45% 84.96% 

Background 98.56% 99.86% 99.20% 

 

 

Figure 6. Examples of semantic segmentation results 

(top: F1 score is 63.16%; bottom: F1 score is 96.31%) 

Overall, the lower parts of scaffolds were poorly 

predicted, as shown in Figure 7. It is assumed that this is 

due to the effect of noise caused by the surrounding 

environment or people, or to the difficulty of 

distinguishing between scaffolds and ground. In future 

studies, we will systematically compare the results of the 
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data acquired by the handheld method with those of the 

data acquired using the robot dog. Furthermore, we will 

analyze the cause of poor prediction on the data acquired 

by the robot dog. Although the point cloud data of 

scaffolds were not perfectly classified with the proposed 

method, they were segmented more effectively than 

when using the RANSAC or histogram-based method 

attempted in previous studies. 

 

 

Figure 7. Examples of failure of semantic segmentation 

4 Conclusion 

This study proposed a novel pipeline to segment 3D 

point cloud data acquired from a robot dog through 

transfer learning. The LIO-SAM-based data acquisition 

system was implemented and tested using a robot dog 

with various patterns of scanning postures. By the 

proposed data acquisition system, point cloud data can be 

effectively collected by the robot moving around the 

scaffold. With the transfer learning, the RandLA-Net 

algorithm was efficiently trained on the scaffold data of 

the two sites for scaffold segmentation. In the experiment, 

the F1-score from the handheld method (97.31%) was 

relatively higher than that from the robot dog (84.96%). 

The cause of this phenomenon will be analyzed in future 

research. The scaffold point clouds classified by the 

segmentation model can be used for 3D modeling 

through post-processing steps. Using the 3D model, 

safety managers can monitor the scaffolding installation 

and dismantling procedure and automatically check 

compliance with safety regulations. If the proposed 

method is further developed, it is expected to efficiently 

monitor scaffolds and reduce mortality and accident rates 

at construction sites. 
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